کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1361661 981469 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors
چکیده انگلیسی

Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M1-, M3-, and M5-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70 ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M1- and M5-acetylcholine receptors and the amplitude of these signals was larger at the M1-acetylcholine receptor. Concentration–response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M1-, M3- and M5-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry - Volume 19, Issue 3, 1 February 2011, Pages 1048–1054
نویسندگان
, , , , ,