کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1396857 | 984198 | 2006 | 9 صفحه PDF | دانلود رایگان |

In this work, high storage modulus and high water stability of chitosan was prepared by incorporating chitosan-grafted carbon nanotubes (CNTs-g-CS). This dramatically improved mechanical property and water stability of chitosan would broaden its biochemical and electrochemical applications. The methodology adopted here by incorporating the CNTs-g-CS allowed a high amount of CNTs incorporation in chitosan without phase separations and enabled the preparations of a durable chitosan/CNTs nanocomposite-modified electrode for biosensor uses. The CNTs-g-CS was synthesized by grafting chitosan onto the carboxylated CNTs in acetic acid-added aqueous solution at 98 °C for 24 h. Thermal gravimetric analysis showed that the content of the chitosan grafts on the CNTs was about 25 wt% of the synthesized CNTs-g-CS. As compared with the ungrafted CNTs, the CNTs-g-CS exhibited a significantly improved dispersion in the chitosan matrix, as examined by optical microscopy and scanning electron microscopy, resulting in significantly improved storage modulus and water stability of the chitosan nanocomposites as revealed by dynamic mechanical analysis and water treatments data, respectively. The storage modulus was significantly up by 134% from 6.4 GPa for the pure chitosan to 15 GPa for the chitosan nanocomposite containing 40 wt% CNTs-g-CS. The water stability of the chitosan nanocomposite films was significantly up from less than 12 h for the chitosan containing various amounts of ungrafted CNTs to at least 48 h for the chitosan containing 20, 30, and 40 wt% CNTs-g-CS.
Journal: European Polymer Journal - Volume 42, Issue 12, December 2006, Pages 3162–3170