کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1402730 | 984782 | 2009 | 9 صفحه PDF | دانلود رایگان |

Gamma radiation was used in every step of the synthesis of a sequential interpenetrating polymer network made of two “smart” polymers: poly(acrylic acid) (PAAc) and poly (N-isopropylacrylamide) (PNIPAAm), the latter grafted onto polypropylene (PP) films (PP-g-PNIPAAm) with the aim of developing medicated coatings for medical devices. Three steps were followed for obtaining net-PP-g-PNIPAAm-inter-net-PAAc: graft copolymerization of PNIPAAm onto PP films by gamma pre-irradiation oxidative method, cross-linking of PP-g-PNIPAAm by gamma irradiation in water to form the first network, with or without N,N′-methylenebis(acrylamide) (MBAAm), and finally the formation of the second network through the polymerization and cross-linking of AAc inside cross-linked PP-g-PNIPAAm by a low gamma radiation dose of 2.5 kGy. The films were characterized regarding the amount of grafted polymers and their composition (FTIR-ATR), thermal behavior (DSC), temperature- and pH-responsive swelling and contact angle (critical pH 6 and lower critical solution temperature ∼33 °C), and loading and release rate of vancomycin. Drug loading was driven by specific interactions between vancomycin and PAAc. Drug-loaded films sustained the delivery for several hours at pH 7.4 and provided release rate values adequate for killing bacteria attempting to adhere the surface of the films.
Journal: European Polymer Journal - Volume 45, Issue 7, July 2009, Pages 1859–1867