کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1423895 | 1509056 | 2014 | 14 صفحه PDF | دانلود رایگان |

Stimuli-sensitive injectable polymeric hydrogels have been extensively investigated during the past decade as bioactive agent delivery vehicles and for tissue engineering applications. An aqueous solution of these polymers undergoes a sol-to-gel phase transition in response to external stimuli such as pH, temperature, salt, light, biomolecules, electromagnetic field, etc. Bioactive molecules or cells can be mixed into the low-viscosity state of the polymer solution and injected into the body at a target site, forming an in situ hydrogel depot, which can then serve as bioactive-molecule-releasing carriers or a cell-growing microenvironment. This review systematically summarizes the recent progress in biodegradable and injectable block copolymer hydrogels, giving special attention to the novel and promising pH- and temperature-sensitive injectable block copolymer hydrogels for biomedical applications. The gelation mechanism, formation of ionic complexes, and biodegradation are highlighted as key factors responsible for controlled protein/drug delivery. The advantages and perspectives of pH- and temperature-sensitive injectable block copolymer hydrogels are also highlighted.
Figure optionsDownload high-quality image (282 K)Download as PowerPoint slide
Journal: Journal of Controlled Release - Volume 193, 10 November 2014, Pages 214–227