کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1424982 986748 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biophysical characterization of hyper-branched polyethylenimine-graft- polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI-PCL-mPEG) for siRNA delivery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Biophysical characterization of hyper-branched polyethylenimine-graft- polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI-PCL-mPEG) for siRNA delivery
چکیده انگلیسی

A library of mono-methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) modified hyperbranched PEI copolymers (hy-PEI-PCL-mPEG) was synthesized to establish structure function relationships for siRNA delivery. These amphiphilic block-copolymers were thought to provide improved colloidal stability and endosomal escape of polyplexes containing siRNA. The influence of the mPEG chain length, PCL segment length, hy-PEI molecular weight and the graft density on their biophysical properties was investigated. In particular, buffer capacity, complex formation constants, gene condensation, polyplex stability, polyplex size and zeta-potential were measured. It was found that longer mPEG chains, longer PCL segments and higher graft density beneficially affected the stability and formation of polyplexes and reduced the zeta-potential of siRNA polyplexes. Significant siRNA mediated knockdown was observed for hy-PEI25k-(PCL900-mPEG2k)1 at N/P 20 and 30, implying that the PCL hydrophobic segment played a very important role in siRNA transfection. These gene delivery systems merit further investigation under in vivo conditions.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Controlled Release - Volume 153, Issue 3, 10 August 2011, Pages 262–268
نویسندگان
, , , , ,