کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1425957 986788 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro
چکیده انگلیسی

Vaccine efficacy is strongly enhanced by antibody-mediated targeting of vaccine components to dendritic cells (DCs), which are professional antigen presenting cells. However, the options to link antigens or immune modulators to a single antibody are limited. Here, we engineered versatile nano- and micrometer-sized slow-release vaccine delivery vehicles that specifically target human DCs to overcome this limitation. The nano- (NPs) and microparticles (MPs), with diameters of approximately 200 nm and 2 µm, consist of a PLGA core coated with a polyethylene glycol-lipid layer carrying the humanized targeting antibody hD1, which does not interact with complement or Fc receptors and recognizes the human C-type lectin receptor DC-SIGN on DCs. We studied how these particles interact with human DCs and blood cells, as well as the kinetics of PLGA-encapsulated antigen degradation within DCs. Encapsulation of antigen resulted in almost 38% degradation for both NPs and MPs 6 days after particle ingestion by DCs, compared to 94% when nonencapsulated, soluble antigen was used. In contrast to the MPs, which were taken up rather nonspecifically, the NPs effectively targeted human DCs. Consequently, targeted delivery only improved antigen presentation of NPs and induced antigen-dependent T cell responses at 10–100 fold lower concentrations than nontargeted NPs.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Controlled Release - Volume 144, Issue 2, 1 June 2010, Pages 118–126
نویسندگان
, , , , , , , ,