کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1427785 | 1509087 | 2006 | 12 صفحه PDF | دانلود رایگان |

Although substantial progress in catheter and stent design has contributed to the success of percutaneous transluminal angioplasty (PTA) of atherosclerotic disease, the incidence of restenosis caused by in-stent neointimal hyperplasia remains a serious problem. Therefore, stents with a non-degradable polymer coating showing controlled release of active ingredients have become an attractive option for the site-specific delivery of anti-restenotic agents. Biodegradable coatings using polyesters, namely poly(lactic-co-glycolic acid) (PLGA) and different poly(vinyl alcohol)-graft-poly(lactic-co-glycolic acid) (PVA-g-PLGA) as paclitaxel-eluting stent coating materials were investigated here to evaluate their influence on the release kinetic. Whereas PLGA showed sigmoid release behavior, the paclitaxel release from PVA-g-PLGA films was continuous over 40 days without initial drug burst. Wide angle X-ray diffraction confirmed that paclitaxel is dissolved in the polymer matrix. Paclitaxel crystallization can be observed at a drug load of ≥ 10%. The effect of drug loading on polymer degradation was studied in films prepared from PVA300-g-PLGA(30) with paclitaxel loadings of 5% and 15% over a time period of 6 weeks. The results suggest a surface-like erosion mechanism in films. A model stent (Jostent peripheral) coated with Parylene N, a poly(p-xylylene) (PPX) derivate, was covered with a second layer of PVA300-g-PLGA(15), and PVA300-g-PLGA(30) by using airbrush method. Morphology of coated stents, and film integrity after expansion from 3.12 to 5 mm was investigated by scanning electron microscopy (SEM). The devices resisted mechanical stress during stent expansion and merit further investigation under in vivo conditions.
Journal: Journal of Controlled Release - Volume 111, Issues 1–2, 10 March 2006, Pages 235–246