کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1430666 | 1509191 | 2006 | 4 صفحه PDF | دانلود رایگان |

Highly energetic heavy ions with energies of 1 MeV/nucleon or more (e.g. 350 MeV Au ions) result in material modification in matter. The extremely high local energy deposition along the path leads to a material change within a nanoscopic cylinder of about 10 nm throughout the film thickness (up to 30 μm). In diamond-like carbon the material change results in conducting tracks embedded in the insulating material. This is due to a change in the bond structure to a higher sp2 bonding content in the tracks and results in a conductivity change of up to four orders of magnitude. This paper discusses the conductivity mechanism in the 10 nm thick wires and presents a study of the conductivity dependence on the sp3-content in the diamond-like carbon and the used ion species. The conductive tracks are the basis of nanoscopic electronic devices made by irradiation of layered structures.
Journal: Materials Science and Engineering: C - Volume 26, Issues 5–7, July 2006, Pages 1171–1174