کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
14609 1232 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity
چکیده انگلیسی

The novel non-thermal CoBlast process has been used recently to create a hydroxyapatite coating on metallic substrates with improved biological response compared to an uncoated implant. In this study, we compared the biological effect of coatings deposited by this process and the industrial standard technique — plasma-spray. Physicochemical properties of these two coatings have been found to be significantly different in that CoBlast HA is less rough but more hydrophilic than the plasma-spray HA as evidenced by data obtained from profilometry and goniometry. Mesenchymal stem cell attachment and adhesion are enhanced on CoBlast HA. Analysis by a combination of EDX and ICP suggests that the higher crystallinity retained by the CoBlast HA result in slower coating dissolution. Detailed in vitro evaluation reveals that plasma-spray HA might induce slightly faster cell proliferation and earlier osteogenic differentiation, but CoBlast HA becomes equivalent to it by the late osteogenic stage. PCR array facilitated the identification of differentially regulated genes involved in various functional aspects of in vitro osteogenesis by the CoBlast HA coating. The expression level of the functional protein products of these genes are in agreement with the PCR data. Coating metallic screws with HA significantly improves the in vivo osseointegration. By measuring of removal force using torque measurement instrument and analyzing the patterns found in X-ray images it is demonstrated that the two HA coatings elicit comparable osseointegration. Using simulated impaction model, CoBlast HA is shown to maintain better performance in cell attachment and mineralization than plasma-spray HA, especially following significant impactions. This might indicate a potentially greater osteoconductivity of CoBlast HA coating in shear-stress associated surgical applications. Collectively, it was demonstrated that CoBlast HA is an effective alternative to plasma-spray HA coating and a promising replacement for specialized surgical applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biotechnology Advances - Volume 30, Issue 1, January–February 2012, Pages 352–362
نویسندگان
, , , ,