کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
149654 456435 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel methodology for simulating vibrated fluidized beds using two-fluid models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
A novel methodology for simulating vibrated fluidized beds using two-fluid models
چکیده انگلیسی

The present work considers the use of the two-fluid (Euler–Euler) CFD approach for the continuum description of vibrated fluidized beds as a less computationally demanding alternative to the discrete description given by Lagrangian–Eulerian methods such as DEM. In particular, a novel simulation strategy consisting on solving the two-fluid model equations in a coordinate reference system that moves with the vibrating walls of a gas–solid fluidized bed is proposed. By this way, vibration is transformed into simple alternating acceleration terms that are introduced through body forces in both the gas and the particle phase equations. The results of a series of two-fluid model simulations compare well with discrete particle simulations as well as with experimental data reported for beds containing Geldart group B particles. In general, the results of a series of two-fluid model simulations show similar trends to those seen in discrete particle simulations as well as in experimental data reported for beds containing Geldart group B particles. Exception of that is the velocity of bubbles, for which the two-fluid simulations compare less satisfactorily with the available experimental data. The two-fluid model simulations are also able to reproduce expected phenomena like the bubble growth with the vibration amplitude and the dependence of the pressure drop fluctuation on the vibration strength. In view of these promising results, the proposed two-fluid model formulation opens the possibility of increasing the scale of the vibrated fluidized beds currently simulated.

Figure optionsDownload as PowerPoint slideHighlight
► A novel strategy for the Eulerian simulation of vibrated fluidized beds is proposed.
► Vibration is incorporated through body forces in the transformed governing equations.
► Results compare well with DEM simulations and experiments for vertically vibrated beds.
► Phenomena like the bubble growth with the vibration strength are simulated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volumes 198–199, 1 August 2012, Pages 261–274
نویسندگان
, , , ,