کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
14976 1365 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination
ترجمه فارسی عنوان
یک روش پیشبینی کلاس پروتئین بسیار دقیق با استفاده از تبدیل خودکار کوواریانس و حذف ویژگی های بازگشتی
کلمات کلیدی
شباهت کم، ماتریس امتیاز موقعیت خاص، کوواریانس متقابل خودکار، ماشین بردار پشتیبانی، حذف ویژگی های بازگشتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی


• Prediction performance of protein structural class has been improved.
• A high-quality feature extraction technique has been designed.
• A recursive feature selection has been used to reduce feature abundance.

Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 59, Part A, December 2015, Pages 95–100
نویسندگان
, , , , ,