کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
15497 1417 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating subcellular location for improving machine learning models of remote homology detection in eukaryotic organisms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Integrating subcellular location for improving machine learning models of remote homology detection in eukaryotic organisms
چکیده انگلیسی

A significant challenge in homology detection is to identify sequences that share a common evolutionary ancestor, despite significant primary sequence divergence. Remote homologs will often have less than 30% sequence identity, yet still retain common structural and functional properties. We demonstrate a novel method for identifying remote homologs using a support vector machine (SVM) classifier trained by fusing sequence similarity scores and subcellular location prediction. SVMs have been shown to perform well in a variety of applications where binary classification of data is the goal. At the same time, data fusion methods have been shown to be highly effective in enhancing discriminative power of data. Combining these two approaches in the application SVM-SimLoc resulted in identification of significantly more remote homologs (p-value < 0.006) than using either sequence similarity or subcellular location independently.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 31, Issue 2, April 2007, Pages 138–142
نویسندگان
, , , ,