کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1615950 | 1005644 | 2012 | 5 صفحه PDF | دانلود رایگان |

Amorphous precursors with composition Nd4.5Fe72−xCo3+xCr2Al1B17.5 (x = 0, 2, 7, 12) were thermally treated by the Joule heating technique with a linearly varying electrical current. The crystallization kinetics was followed by monitoring the resistance of the ribbons during the heating up to the final applied current. Crystallized nanostructured phases coexist with an amorphous matrix, as it was observed by means of Mössbauer Spectroscopy and X-ray diffraction.The irreversible magnetic response of the Joule heated ribbons was analyzed by the First Order Reversal Curves (FORC) diagram technique. For the optimal treatments, associated with the higher maximum energy products for each sample composition, it was found that the main interaction is of a strongly dipolar characteristic. Over annealed samples show a FORC diagram that gives into account of softening, due to grain growth, for those phases precipitated at the first crystallization stage. When it is measured at 20 K, the hardest magnetic sample (Fe = 72 at.%, Co = 3 at.%, Ifinal = 0.5 A), exhibits a diagram with characteristics corresponding to dipolar interactions of soft phases. This fact is consistent with an enhancement of the exchange length due to the increase in the soft phase stiffness as it is expected at low temperatures.
► Nd-lean amorphous precursors subjected to Joule heating.
► Exchange-spring magnets.
► FORC diagrams of irreversible switching fields.
► This last techniques helped us to verify the optimized treatments conditions.
Journal: Journal of Alloys and Compounds - Volume 536, Supplement 1, 25 September 2012, Pages S389–S393