کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1660582 | 1008406 | 2012 | 10 صفحه PDF | دانلود رایگان |

A predictive model for residual stresses induced in a laser hardened workpiece of AISI 4140 steel with no melting has been developed and experimentally verified. A transient three-dimensional thermal and kinetic model is first solved to obtain the temperature and solid phase history of the workpiece, which is then sequentially coupled to a three-dimensional stress model to predict residual stresses. The phase transformation strains are added to the thermal strains at each time step during the heating and cooling cycles to obtain the resultant residual stresses in the workpiece. The importance of considering phase transformation has been explained through the comparison of the magnitudes of residual stresses with and without the inclusion of phase transformation kinetics. The model predicted strong compressive residual stresses of about 200 MPa in the heat affected zone due to austenite-to-martensite transformation. The predictions matched well with the X-ray diffraction measurements.
Journal: Surface and Coatings Technology - Volume 203, Issue 14, 15 April 2009, Pages 2003–2012