کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1661800 1008431 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses
چکیده انگلیسی
It was found that the CrNx films oxidized in air after 600 °C by the dissociation of fcc (face center cubic)-CrN to h(hexagonal)-Cr2N and nitrogen and, after 900 °C by the dissociation of h-Cr2N to Cr and nitrogen in the film. The addition of Al to CrN film can further improve the oxidation resistance, especially for the high temperature above 800 °C. The oxidation degradation in two Cr-Al-N films started with dissociation of fcc-CrAlN to h-Cr2N and nitrogen in the film. The presence of thermally stable Al-N bonding in the fcc-CrAlN structure can suppress the reduction of nitrogen in the film. A dense (Cr,Al)2O3 layer (either amorphous or crystalline) formed at early oxidation stage (< 700 °C) can act as an effective diffusion barrier slowing down the inward diffusion of the oxygen at high temperatures. Precipitation of h-AlN phase in Cr0.77Al0.23N and Cr0.40Al0.60N films were found at 900 and 1000 °C respectively, accompanied with crystalline Al2O3 formation. After that, both Cr-Al-N films oxidized rapidly after the dissociation of h-Cr2N to Cr and nitrogen. In addition, Cr0.40Al0.60N films exhibit higher oxidation resistance than Cr0.77Al0.23N films. The fcc-CrAlN was retained up to 900 °C and the precipitation of h-AlN phase took place after 1000 °C in Cr0.40Al0.60N films. Cr0.40Al0.60N films also retained a hardness of 25 GPa after annealing at 800 °C in ambient air for 1 h. The activation energies of the final oxidation exothermic peaks in CrNx, Cr0.77Al0.23N and Cr0.40Al0.60N films in the current study were found to be 2.2, 3.2 and 3.9 eV atom− 1 respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 202, Issue 14, 15 April 2008, Pages 3272-3283
نویسندگان
, , , ,