کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1694371 | 1519067 | 2015 | 9 صفحه PDF | دانلود رایگان |
• A series of surfactant-modified montmorillonites (organo-Mt) was synthesized.
• ClO4− adsorption was affected by the surfactant molecular structure.
• Longer alkyl chain resulted in greater adsorption capacity for ClO4−.
• BM head showed better selectivity for ClO4− than -TM and -PY.
• Two alkyl chains increased capacity but decreased rate of ClO4− adsorption.
A series of organo-montmorillonites (organo-Mt) was synthesized using various cationic surfactants with different alkyl-chain lengths, head groups, and alkyl-chain numbers, which were systematically examined for perchlorate adsorption. The products were characterized by the specific surface area, field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. In addition, the surfactant loadings and surface charges were investigated by CHN analysis and zeta potential measurements. The greatest adsorption capacity of 0.95 mmol/g-composite was obtained on benzyloctadecyldimethylammonium-modified Mt. Increasing the alkyl-chain length significantly enhanced the capacity and selectivity for perchlorate adsorption, but resulted in decrease of adsorption rate. Compared with trimethylammonium and pyridinium with the same alkyl-chain length, the benzyldimethylammonium as a head group showed better performance in terms of adsorption capacity and selectivity of perchlorate because of higher hydrophobicity. Moreover, increasing the alkyl-chain number decreased adsorption rate, but enhanced adsorption capacity, because of dense packing of alkyl chains and high driving force for entrapment of counter ion-accompanying surfactant. The perchlorate adsorption performance of organo-Mt was synergistically influenced by the alkyl-chain length, head group and alkyl-chain number of the surfactants used for modification.
Journal: Applied Clay Science - Volume 114, September 2015, Pages 212–220