کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1705053 | 1519419 | 2013 | 12 صفحه PDF | دانلود رایگان |

Maximum likelihood (ML) estimation is a popular method for parameter estimation when modeling discrete or count observations but unfortunately it may be sensitive to outliers. Alternative robust methods like minimum Hellinger distance (MHD) have been proposed for estimation. However, in the multivariate case, the MHD method leads to computer intensive estimation especially when the joint probability density function is complicated. In this paper, a Hellinger type distance measure based on the probability generating function is proposed as a tool for quick and robust parameter estimation. The proposed method yields consistent estimators, performs well for simulated and real data, and can be computationally much faster than ML or MHD estimation.
Journal: Applied Mathematical Modelling - Volume 37, Issues 12–13, 1 July 2013, Pages 7374–7385