کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1705187 1012425 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some robust objectives of FCM for data analyzing
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Some robust objectives of FCM for data analyzing
چکیده انگلیسی

There are many data clustering techniques available to extract meaningful information from real world data, but the obtained clustering results of the available techniques, running time for the performance of clustering techniques in clustering real world data are highly important. This work is strongly felt that fuzzy clustering technique is suitable one to find meaningful information and appropriate groups into real world datasets. In fuzzy clustering the objective function controls the groups or clusters and computation parts of clustering. Hence researchers in fuzzy clustering algorithm aim is to minimize the objective function that usually has number of computation parts, like calculation of cluster prototypes, degree of membership for objects, computation part for updating and stopping algorithms. This paper introduces some new effective fuzzy objective functions with effective fuzzy parameters that can help to minimize the running time and to obtain strong meaningful information or clusters into the real world datasets. Further this paper tries to introduce new way for predicting membership, centres by minimizing the proposed new fuzzy objective functions. And experimental results of proposed algorithms are given to illustrate the effectiveness of proposed methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 35, Issue 5, May 2011, Pages 2571–2583
نویسندگان
, , , ,