کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1705281 | 1519420 | 2013 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new high order compact off-step discretization for the system of 3D quasi-linear elliptic partial differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a new fourth order compact finite difference scheme based on off-step discretization for the solution of the system of 3D quasi-linear elliptic partial differential equations subject to appropriate Dirichlet boundary conditions. We also develop new fourth order methods to obtain the numerical solution of first order normal derivatives of the solution. In all the cases, we use only 19-grid points of a single computational cell to compute the problem. The proposed methods are directly applicable to singular problems and the problems in polar coordinates, without any modification required unlike the previously developed high order schemes of [14] and [30]. We discuss the convergence analysis of the proposed method in details. Many physical problems are solved and comparative results are given to illustrate the usefulness of the proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 37, Issues 10â11, 1 June 2013, Pages 6870-6883
Journal: Applied Mathematical Modelling - Volume 37, Issues 10â11, 1 June 2013, Pages 6870-6883
نویسندگان
R.K. Mohanty, Nikita Setia,