کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1705329 1012430 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of the Yukawa-coupled Klein–Gordon–Schrödinger equations via a Chebyshev pseudospectral multidomain method
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Numerical solution of the Yukawa-coupled Klein–Gordon–Schrödinger equations via a Chebyshev pseudospectral multidomain method
چکیده انگلیسی

The Klein–Gordon–Schrödinger equations describe a classical model of the interaction between conservative complex neutron field and neutral meson Yukawa in quantum field theory. In this paper, we study the long-time behavior of solutions for the Klein–Gordon–Schrödinger equations. We propose the Chebyshev pseudospectral collocation method for the approximation in the spatial variable and the explicit Runge–Kutta method in time discretization. In comparison with the single domain, the domain decomposition methods have good spatial localization and generate a sparse space differentiation matrix with high accuracy. In this study, we choose an overlapping multidomain scheme. The obtained numerical results show the Pseudospectral multidomain method has excellent long-time numerical behavior and illustrate the effectiveness of the numerical scheme in controlling two particles. Some comparisons with single domain pseudospectral and finite difference methods will be also investigated to confirm the efficiency of the new procedure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 36, Issue 6, June 2012, Pages 2340–2349
نویسندگان
, ,