کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1705459 1012433 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new algorithm for variance based importance analysis of models with correlated inputs
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
A new algorithm for variance based importance analysis of models with correlated inputs
چکیده انگلیسی

Importance analysis is aimed at finding the contributions of the inputs to the output uncertainty. For structural models involving correlated input variables, the variance contribution by an individual input variable is decomposed into correlated contribution and uncorrelated contribution in this study. Based on point estimate, this work proposes a new algorithm to conduct variance based importance analysis for correlated input variables. Transformation of the input variables from correlation space to independence space and the computation of conditional distribution in the process ensure that the correlation information is inherited correctly. Different point estimate methods can be employed in the proposed algorithm, thus the algorithm is adaptable and evolvable. Meanwhile, the proposed algorithm is also applicable to uncertainty systems with multiple modes. The proposed algorithm avoids the sampling procedure, which usually consumes a heavy computational cost. Results of several examples in this work have proven the proposed algorithm can be used as an effective tool to deal with uncertainty analysis involving correlated inputs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 37, Issue 3, 1 February 2013, Pages 864–875
نویسندگان
, , , , ,