کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1705904 | 1012444 | 2010 | 17 صفحه PDF | دانلود رایگان |

Rotor vibrations caused by large time-varying base motion are of considerable importance as there are a good number of rotors, e.g., the ship and aircraft turbine rotors, which are often subject to excitations, as the rotor base, i.e. the vehicle, undergoes large time varying linear and angular displacements as a result of different maneuvers. Due to such motions of the base, the equations of vibratory motion of a flexible rotor–shaft relative to the base (which forms a non-inertial reference frame) contains terms due to Coriolis effect as well as inertial excitations (generally asynchronous to rotor spin) generated by different system parameters. Such equations of motion are linear but time-varying in nature, invoking the possibility of parametric instability under certain frequency–amplitude combinations of the base motion. An investigation of active vibration control of an unbalanced rotor–shaft system on moving bases is attempted in this work with electromagnetic control force provided by an actuator consisting of four electromagnetic exciters, placed on the stator in a suitable plane around the rotor–shaft. The actuator does not levitate the rotor or facilitate any bearing action, which is provided by the conventional suspension system. The equations of motion of the rotor–shaft continuum are first written with respect to the non-inertial reference frame (the moving base in this case) including the effect of rotor internal damping. A conventional model for the electromagnetic exciter is used. Numerical simulations performed on the flexible rotor–shaft modelled using beam finite elements shows that the control action is successful in avoiding the parametric instability, postponing the instability due to internal material damping and reducing the rotor response relative to the rigid base significantly, with sufficiently low demand of control current in comparison with the bias current in the actuator coils.
Journal: Applied Mathematical Modelling - Volume 34, Issue 9, September 2010, Pages 2353–2369