کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1705936 | 1012445 | 2011 | 10 صفحه PDF | دانلود رایگان |

The phase I maximum flow and most positive cut methods are used to solve the feasibility problem. Both of these methods take one maximum flow computation. Thus the feasibility problem can be solved using maximum flow algorithms. Let n and m be the number of nodes and arcs, respectively. In this paper, we present an algorithm to solve the feasibility problem with integer lower and upper bounds. The running time of our algorithm is O(mn log (nU)), where U is the value of maximum upper bound. Our algorithm improves the O(m2 log (nU))-time algorithm in [12]. Hence the current algorithm improves the running time in [12] by a factor of n. Sleator and Goldberg’s algorithm is one of the well-known maximum flow algorithms, which runs in O(mn log n) time, see [5]. Under similarity assumption [11], our algorithm runs in O(mn log n) time, which is the running time of Sleator and Goldberg’s algorithm. The merit of our algorithm is that, in the case of infeasibility of the given network, it not only diagnoses infeasibility but also presents some information that is useful to modeler in estimating the maximum cost of adjusting the infeasible network.
Journal: Applied Mathematical Modelling - Volume 35, Issue 11, November 2011, Pages 5276–5285