کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1706112 | 1012450 | 2011 | 14 صفحه PDF | دانلود رایگان |

Based on Giannakopoulos’s 2-D functionally graded material (FGM) contact model, a modified contact model is put forward to deal with impact problem of the functionally graded shallow spherical shell in thermal environment. The FGM shallow spherical shell, having temperature dependent material property, is subjected to a temperature field uniform over the shell surface but varying along the thickness direction due to steady-state heat conduction. The displacement field and geometrical relations of the FGM shallow spherical shell are established on the basis of Timoshenko–Midlin theory. And the nonlinear motion equations of the FGM shallow spherical shell under low velocity impact in thermal environment are founded in terms of displacement variable functions. Using the orthogonal collocation point method and the Newmark method to discretize the unknown variable functions in space and in time domain, the whole problem is solved by the iterative method. In numerical examples, the contact force and nonlinear dynamic response of the FGM shallow spherical shell under low velocity impact are investigated and effects of temperature field, material and geometrical parameters on contact force and dynamic response of the FGM shallow spherical shell are discussed.
Journal: Applied Mathematical Modelling - Volume 35, Issue 6, June 2011, Pages 2887–2900