کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1706127 1012450 2011 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Three dimensional elastodynamics of 2D quasicrystals: The derivation of the time-dependent fundamental solution
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Three dimensional elastodynamics of 2D quasicrystals: The derivation of the time-dependent fundamental solution
چکیده انگلیسی

The time-dependent differential equations of elasticity for 2D quasicrystals with general structure of anisotropy (dodecagonal, octagonal, decagonal, pentagonal, hexagonal, triclinic) are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The fundamental solution (matrix) is defined for this vector partial differential equation. A new method of the numerical computation of values of the fundamental solution is suggested. This method consists of the following: the Fourier transform with respect to space variables is applied to vector equation for the fundamental solution. The obtained vector ordinary differential equation has matrix coefficients depending on Fourier parameters. Using the matrix computations a solution of the vector ordinary differential equation is numerically computed. Finally, applying the inverse Fourier transform numerically we find the values of the fundamental solution. Computational examples confirm the robustness of the suggested method for 2D quasicrystals with arbitrary type of anisotropy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 35, Issue 6, June 2011, Pages 3092–3110
نویسندگان
, ,