کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1706360 1012457 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory
چکیده انگلیسی

In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 34, Issue 11, November 2010, Pages 3659–3673
نویسندگان
, ,