کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1706763 | 1012475 | 2009 | 11 صفحه PDF | دانلود رایگان |

Accurately electric load forecasting has become the most important management goal, however, electric load often presents nonlinear data patterns. Therefore, a rigid forecasting approach with strong general nonlinear mapping capabilities is essential. Support vector regression (SVR) applies the structural risk minimization principle to minimize an upper bound of the generalization errors, rather than minimizing the training errors which are used by ANNs. The purpose of this paper is to present a SVR model with immune algorithm (IA) to forecast the electric loads, IA is applied to the parameter determine of SVR model. The empirical results indicate that the SVR model with IA (SVRIA) results in better forecasting performance than the other methods, namely SVMG, regression model, and ANN model.
Journal: Applied Mathematical Modelling - Volume 33, Issue 5, May 2009, Pages 2444–2454