کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1707238 | 1012519 | 2007 | 7 صفحه PDF | دانلود رایگان |

A mathematical model has been developed to describe the force of liquid flow acting on a colloidal spherical particle as it approaches a solid surface at intermediate-Reynolds-number-flow regime. The model has incorporated bispherical coordinates to determine a stream function for the flow disturbed by the sphere. The stream function was then used to derive the flow force on the particle as a function of the inter-surface separation distance. The force equation was related to the modified Stokes equation to obtain an exact analytical expression for the correction factor to the Stokes law. Finally, a rational approximation is presented, which is in good agreement with the exact numerical result, and can be readily applied to more general particle–surface interactions involving short-range hydrodynamics associated with colloidal particles in the near vicinity of a large solid collector surface at intermediate Reynolds number of the supporting flow.
Journal: Applied Mathematical Modelling - Volume 31, Issue 4, April 2007, Pages 763–769