کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1721599 1014521 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Laboratory flume studies on monochromatic wave-fine sandy bed interactions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی دریا (اقیانوس)
پیش نمایش صفحه اول مقاله
Laboratory flume studies on monochromatic wave-fine sandy bed interactions
چکیده انگلیسی
Tests on two fine sandy soils (d50 = 0.134 mm and 0.092 mm) under monochromatic wave actions were conducted in a wave flume of 37 m (L) by 1.2 m (H) by 1 m (W) to investigate characteristics of fluidized responses. The pore pressure measurements demonstrate only an unfluidized response in the coarser sandy bed, while in the finer one, two more feature fluidized responses. Fluidized responses are similarly classified into resonantly and non-resonantly fluidized according to Foda and Tzang [Foda, M.A., Tzang, S.-Y., 1994. Resonant fluidization of silty soil by water waves. J. Geophys. Res., 99-C10: 20463-20475.]. At a given depth, they are in principle defined by magnitude of fluidization ratio between excess pore pressure and static soil stresses and by the occurrence of a resonance event in the same test series. Inside the sandy bed, the excess pore pressures of a fluidized response are almost initiated simultaneously. Their magnitudes are essentially in static balance to the integrated weight of overlaying fluidized soil layers. Comparisons with previously reported data from a silty bed (d50 = 0.05 mm) by Foda and Tzang have immediately indicated the importance of grain fraction. With less fine constituents, surface layers of the two sandy soils are less susceptible to fluidization. Resonance mechanism is evidently diminishing in a resonantly fluidized response, and re-fluidization becomes less potential in the subsequent tests. In a resonantly fluidized response, pore pressures at a given depth would start to resonantly grow from a fluidization ratio of 7-14%. In a few wave cycles, resonant growth subsides at a fluidization ratio of greater than 50%, which value increases with depth. The analyses clearly illustrate that fluidization tends to be initiated in surface layers and fast spreads into lower layers. Fluidization is dependent on finer constituting grains, smaller shear modulus G and permeability k and thinner boundary layers in bed soils. Measurements of previous silt tests are analyzed to show that lower limits of wave steepness on resonantly fluidizing a soil bed increase linearly with relative water depth ranging from 0.13 to 0.23. Data of present fine sand tests have preliminarily confirmed the linear trend. Over a fluidized sandy bed, similar vivid sediment suspensions were observed during wave generations as had been reported in silt tests.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Coastal Engineering - Volume 53, Issue 11, November 2006, Pages 965-982
نویسندگان
, ,