کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1724 89 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of Staphylococcus epidermidis on osteoblast cell adhesion and viability on a Ti alloy surface in a microfluidic co-culture environment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Effects of Staphylococcus epidermidis on osteoblast cell adhesion and viability on a Ti alloy surface in a microfluidic co-culture environment
چکیده انگلیسی

A microfluidic device was used for real time imaging of MC3T3-E1 murine calvarial pre-osteoblasts (osteoblasts) in response to very small numbers of Staphylococcus epidermidis inoculated on the surface of a polished TiAl6V4 alloy in a serum-based medium. The Ti alloy surface was integrated to a poly(dimethylsiloxane) fluidic housing with eight 10 μl channels for high-throughput, cross-contamination-free co-culture. In the absence of S. epidermidis osteoblasts were able to adhere, spread, proliferate and remain viable on the Ti alloy surface during a 25 h culture period. With 102 or 105 colony forming units (cfu) ml−1S. epidermidis inoculated on the alloy surface osteoblast adhesion, spreading and proliferation were not adversely affected during the early stages of culture. However, osteoblasts became damaged by the end of culture, as S. epidermidis actively proliferated in the co-culture channels and formed small clusters on the alloy surface. These observations suggest that the small numbers of S. epidermidis did not necessarily compete with osteoblasts for the alloy surface during initial host cell development, but rapid proliferation of the bacteria might have changed the microenvironment, making it unfavorable to sustain the viability of osteoblasts. The results provide a new insight in projecting the potential utility of the microfluidic co-culture approach to developing physiologically and clinically relevant in vitro models of orthopedic implant-associated bacterial infection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 6, Issue 11, November 2010, Pages 4422–4429
نویسندگان
, , , ,