کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1729434 1521176 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of critical heat flux using ANFIS
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Prediction of critical heat flux using ANFIS
چکیده انگلیسی
The prediction of Critical Heat Flux (CHF) is essential for water cooled nuclear reactors since it is an important parameter for the economic efficiency and safety of nuclear power plants. Therefore, in this study using Adaptive Neuro-Fuzzy Inference System (ANFIS), a new flexible tool is developed to predict CHF. The process of training and testing in this model is done by using a set of available published field data. The CHF values predicted by the ANFIS model are acceptable compared with the other prediction methods. We improve the ANN model that is proposed by Vaziri et al. (2007) to avoid overfitting. The obtained new ANN test errors are compared with ANFIS model test errors, subsequently. It is found that the ANFIS model with root mean square (RMS) test errors of 4.79%, 5.04% and 11.39%, in fixed inlet conditions and local conditions and fixed outlet conditions, respectively, has superior performance in predicting the CHF than the test error obtained from MLP Neural Network in fixed inlet and outlet conditions, however, ANFIS also has acceptable result to predict CHF in fixed local conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 37, Issue 6, June 2010, Pages 813-821
نویسندگان
, , ,