کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1731788 | 1016097 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method for state of energy estimation of lithium-ion batteries based on neural network model
ترجمه فارسی عنوان
یک روش برای تخمینی انرژی باتری های لیتیوم یون بر اساس مدل شبکه عصبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
دولت انرژی شبکه عصبی موجک، باتری های لیتیوم یون، فیلتر ذرات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
The state-of-energy is an important evaluation index for energy optimization and management of power battery systems in electric vehicles. Unlike the state-of-charge which represents the residual energy of the battery in traditional applications, state-of-energy is integral result of battery power, which is the product of current and terminal voltage. On the other hand, like state-of-charge, the state-of-energy has an effect on terminal voltage. Therefore, it is hard to solve the nonlinear problems between state-of-energy and terminal voltage, which will complicate the estimation of a battery's state-of-energy. To address this issue, a method based on wavelet-neural-network-based battery model and particle filter estimator is presented for the state-of-energy estimation. The wavelet-neural-network based battery model is used to simulate the entire dynamic electrical characteristics of batteries. The temperature and discharge rate are also taken into account to improve model accuracy. Besides, in order to suppress the measurement noises of current and voltage, a particle filter estimator is applied to estimate cell state-of-energy. Experimental results on LiFePO4 batteries indicate that the wavelet-neural-network based battery model simulates battery dynamics robustly with high accuracy and the estimation value based on the particle filter estimator converges to the real state-of-energy within an error of ±4%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 90, Part 1, October 2015, Pages 879-888
Journal: Energy - Volume 90, Part 1, October 2015, Pages 879-888
نویسندگان
Guangzhong Dong, Xu Zhang, Chenbin Zhang, Zonghai Chen,