کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1732106 1521461 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method
ترجمه فارسی عنوان
سنتز چسبندگی و عملکرد حرارتی نانوکپسولهای هسته / تیتانیوم اسید استایریک اسید / تیتانیوم به روش سولا ژل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی


• PCM nanocapsules with titania shell were prepared through a gel method.
• The encapsulated SA melt in the temperature range of about 54–56 °C.
• The encapsulated SA had latent heat capacities of in the range of about 50–109 J/g.
• TGA results demonstrated that they had good thermal stability.
• The encapsulated SA had good thermal conductivity and phase change reversibility.

In order to improve the thermal properties of PCMs (phase change materials), in this study, a new series of NEPCMs (nanoencapsulated phase change materials) were synthesized using a sol–gel method with SA (stearic acid) as the core and TiO2 (titania) as the shell material. The effects of the weight ratios of the SA/titania precursor TTIP (titanium tetraisopropoxide) on the morphology, thermal performance and thermal conductivity of the prepared nanocapsules are discussed. The experimental results indicate that the SA was encapsulated in spheres with minimum and maximum diameters of 583.4 and 946.4 nm, at encapsulation ratios between 30.36% and 64.76%. The results indicated that there was no chemical interaction between the core and shell materials, SA and TiO2, which were compatible with each other under controlled synthesis conditions of pH 10. The NEPCMs with high mass ratios of SA/TTIP exhibited enhanced phase change properties and higher encapsulation efficiencies but lower thermal conductivities than NEPCMs with low mass ratios. Good thermal reliability and chemical stability of the NEPCMs were obtained by cycling the material through 2500 melting/solidifying cycles. In conclusion, the outstanding thermal stability and reliability of the prepared nanocapsules make these materials appropriate phase change materials for thermal energy storage applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 85, 1 June 2015, Pages 635–644
نویسندگان
, , , , , , ,