کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
173286 458585 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finite-sample comparison of robust estimators for nonlinear regression using Monte Carlo simulation: Part I. Univariate response models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Finite-sample comparison of robust estimators for nonlinear regression using Monte Carlo simulation: Part I. Univariate response models
چکیده انگلیسی

Classical least squares can be strongly affected due to the inevitable occurrence of departures from its model assumptions, most notably those from the distributional assumptions. Robust estimators, on the other hand, will resist them. Unfortunately, the multiplicity of alternative robust regression estimators that have been suggested in the literature over the years is a source of confusion for practitioners of regression analysis. Moreover, little is known about their small-sample performance in the nonlinear regression setting, in particular on the chemical engineering field. A simulation study comparing six such estimators (namely LMS, LTS, LTD, MM-, ττ-, and LpLp-norm) together with the usual least squares estimator is presented. The results obtained provide guidance as to the choice of an appropriate estimator.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 35, Issue 3, 8 March 2011, Pages 530–544
نویسندگان
, ,