کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1754913 | 1522818 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel approach to sand production prediction using artificial intelligence
ترجمه فارسی عنوان
یک رویکرد جدید به پیش بینی شن و ماسه با استفاده از هوش مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تولید شن و ماسه، کاهش کل بحرانی، شبکه های عصبی مصنوعی، انتشار اولیه، بهینه سازی ذرات ذرات،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
زمین شناسی اقتصادی
چکیده انگلیسی
Over the years, accurate and early prediction of oil or gas well sanding potential has been of great importance in order to design an effective sand control management strategy. Significant technical and economic benefits can be achieved if the correct and early design of sand control method is considered. In this study, critical total drawdown (CTD) as an index of sand production onset is aimed to be estimated through 4 proposed methods. A total of 23 field data sets collected from problematic wells of North Adriatic Sea were used to develop these models. First, simple regression analysis was performed to recognize the statistically important affecting parameters. Using these variables, multiple linear regression (MLR) and genetic algorithm evolved MLR (GA-MLR) were developed for estimation of CTD. Two artificial neural networks (ANN) with back propagation (BP) and particle swarm optimization (PSO) algorithms were constructed to correlate CTD to all affecting parameters extracted from the literature. The performance comparison showed that the artificial intelligent system could be employed successfully in sanding onset prediction and minimizing the uncertainties. More accurate results were obtained when PSO algorithm was applied to optimize the weights and thresholds of neural network.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Petroleum Science and Engineering - Volume 123, November 2014, Pages 147-154
Journal: Journal of Petroleum Science and Engineering - Volume 123, November 2014, Pages 147-154
نویسندگان
Ehsan Khamehchi, Iman Rahimzadeh Kivi, Mohammadreza Akbari,