کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1773071 1523550 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient early global relaxation of asteroid Vesta
ترجمه فارسی عنوان
آرامش ابتدایی جهانی وستا سیارک
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
چکیده انگلیسی

The asteroid Vesta is a differentiated planetesimal from the accretion phase of Solar System formation. Although its present-day shape is dominated by a non-hydrostatic fossil equatorial bulge and two large, mostly unrelaxed impact basins, Vesta may have been able to approach hydrostatic equilibrium during a brief early period of intense interior heating. We use a finite element viscoplastic flow model coupled to a 1D conductive cooling model to calculate the expected rate of relaxation throughout Vesta’s early history. We find that, given sufficient non-hydrostaticity, the early elastic lithosphere of Vesta experienced extensive brittle failure due to self-gravity, thereby allowing relaxation to a more hydrostatic figure. Soon after its accretion, Vesta reached a closely hydrostatic figure with <2 km non-hydrostatic topography at degree-2, which, once scaled, is similar to the maximum disequilibrium of the hydrostatic asteroid Ceres. Vesta was able to support the modern observed amplitude of non-hydrostatic topography only >40–200 My after formation, depending on the assumed depth of megaregolith. The Veneneia and Rheasilvia giant impacts, which generated most non-hydrostatic topography, must have therefore occurred >40–200 My after formation. Based on crater retention ages, topography, and relation to known impact generated features, we identify a large region in the northern hemisphere that likely represents relic hydrostatic terrain from early Vesta. The long-wavelength figure of this terrain suggests that, before the two late giant impacts, Vesta had a rotation period of 5.02 h (6.3% faster than present) while its spin axis was offset by 3.0 ° from that of the present. The evolution of Vesta’s figure shows that the hydrostaticity of small bodies depends strongly on its age and specific impact history and that a single body may embody both hydrostatic and non-hydrostatic terrains and epochs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 240, 15 September 2014, Pages 133–145
نویسندگان
, , , ,