کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1773395 | 1021132 | 2013 | 12 صفحه PDF | دانلود رایگان |

The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.
► We investigate two environments similar to those that may have once existed on Mars.
► Our instruments represent a subset of the Mars Science Laboratory (MSL) payload.
► Evolved Gas techniques used here are analogous to Sample Analysis at Mars (SAM).
► δ13C data from EGA-CRDS are comparable to δ13C data from laboratory IRMS analysis.
► Results are used to discern different carbon sources for carbonates at each site.
Journal: Icarus - Volume 224, Issue 2, June 2013, Pages 297–308