کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1773932 1021152 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets
چکیده انگلیسی
Giant protoplanets formed by gravitational instability in the outer regions of circumstellar disks go through an early phase of quasi-static contraction during which radii are large (∼1 AU) and internal temperatures are low (<2000 K). The main source of opacity in these objects is dust grains. We investigate two problems involving the effect of opacity on the evolution of isolated, non-accreting planets of 3, 5, and 7 MJ. First, we pick three different overall metallicities for the planet and simply scale the opacity accordingly. We show that higher metallicity results in slower contraction as a result of higher opacity. It is found that the pre-collapse time scale is proportional to the metallicity. In this scenario, survival of giant planets formed by gravitational instability is predicted to be more likely around low-metallicity stars, since they evolve to the point of collapse to small size on shorter time scales. But metal-rich planets, as a result of longer contraction times, have the best opportunity to capture planetesimals and form heavy-element cores. Second, we investigate the effects of opacity reduction as a result of grain growth and settling, for the same three planetary masses and for three different values of overall metallicity. When these processes are included, the pre-collapse time scale is found to be of order 1000 years for the three masses, significantly shorter than the time scale calculated without these effects. In this case the time scale is found to be relatively insensitive to planetary mass and composition. However, the effects of planetary rotation and accretion of gas and dust, which could increase the timescale, are not included in the calculation. The short time scale we find would preclude metal enrichment by planetesimal capture, as well as heavy-element core formation, over a large range of planetary masses and metallicities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 211, Issue 2, February 2011, Pages 939-947
نویسندگان
, ,