کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1774059 1021155 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Planetesimal formation by turbulent concentration
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Planetesimal formation by turbulent concentration
چکیده انگلیسی

The formation of 1–1000 km diameter planetesimals from dust grains in a protoplanetary disk is a key step in planet formation. Conventional models for planetesimal formation involve pairwise sticking of dust grains, or the sedimentation of dust grains to a thin layer at the disk midplane followed by gravitational instability. Each of these mechanisms is likely to be frustrated if the disk is turbulent. Particles with stopping times comparable to the turnover time of the smallest eddies in a turbulent disk can become concentrated into dense clumps that may be the precursors of planetesimals. Such particles are roughly millimeter-sized for a typical protoplanetary disk. To survive to become planetesimals, clumps need to form in regions of low vorticity to avoid rotational breakup. In addition, clumps must have sufficient self gravity to avoid break up due to the ram pressure of the surrounding gas. Given these constraints, the rate of planetesimal formation can be estimated using a cascade model for the distribution of particle concentration and vorticity within eddies of various sizes in a turbulent disk. We estimate planetesimal formation rates and planetesimal diameters as a function of distance from a star for a range of protoplanetary disk parameters. For material with a solar composition, the dust-to-gas ratio is too low to allow efficient planetesimal formation, and most solid material will remain in small particles. Enhancement of the dust-to-gas ratio by 1–2 orders of magnitude, either vertically or radially, allows most solid material to be converted into planetesimals within the typical lifetime of a disk. Such dust-to-gas ratios may occur near the disk midplane as a result of vertical settling of short-lived clumps prior to clump breakup. Planetesimal formation rates are sensitive to the assumed size and rotational speed of the largest eddies in the disk, and formation rates increase substantially if the largest eddies rotate more slowly than the disk itself. Planetesimal formation becomes more efficient with increasing distance from the star unless the disk surface density profile has a slope of −1.5 or steeper as a function of distance. Planetesimal formation rates typically increase by an order-of-magnitude or more moving outward across the snow line for a solid surface density increase of a factor of 2. In all cases considered, the modal planetesimal size increases with roughly the square root of distance from the star. Typical modal diameters are 100 km and 400 km in the regions corresponding to the asteroid belt and Kuiper belt in the Solar System, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 208, Issue 2, August 2010, Pages 505–517
نویسندگان
,