کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1775468 | 1021195 | 2007 | 11 صفحه PDF | دانلود رایگان |

We have extended our Monte Carlo model of exospheres [Wurz, P., Lammer, H., 2003. Icarus 164 (1), 1–13] by treating the ion-induced sputtering process from a known surface in a self-consistent way. The comparison of the calculated exospheric densities with experimental data, which are mostly upper limits, shows that all of our calculated densities are within the measurement limits. The total calculated exospheric density at the lunar surface of about 1×107 m−31×107 m−3 as result of solar wind sputtering we find is much less than the experimental total exospheric density of about 1012 m−31012 m−3. We conclude that sputtering contributes only a small fraction of the total exosphere, at least close to the surface. Because of the considerably larger scale height of atoms released via sputtering into the exosphere, sputtered atoms start to dominate the exosphere at altitudes exceeding a few 1000 km, with the exception of some light and abundant species released thermally, e.g. H2, He, CH4, and OH. Furthermore, for more refractory species such as calcium, our model indicates that sputtering may well be the dominant mechanism responsible for the lunar atmospheric inventory, but observational data does not yet allow firm conclusions to be drawn.
Journal: Icarus - Volume 191, Issue 2, 15 November 2007, Pages 486–496