کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1777849 1523671 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation
چکیده انگلیسی

Despite the widespread application of nonlinear mathematical models, comparative studies of different models are still a huge task for modellers. This is because a large number of trial and error processes are needed to develop each model, so the workload will be multiplied into an unmanageable level if many types of models are involved. This study presents an efficient approach by using the Gamma test (GT) to select the input variables and the training data length, so that the trial and error workload can be greatly reduced. The methodology is tested in estimating solar radiation at the Brue catchment, UK. Several nonlinear models have been developed efficiently with the aid of the GT, including local linear regression, multi-layer perceptron (MLP), Elman neural network, neural network auto-regressive model with exogenous inputs (NNARX) and adaptive neuro-fuzzy inference system (ANFIS). This work is only feasible within the time and resources constraint, due to the GT in reducing huge workload of the trial and error process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Atmospheric and Solar-Terrestrial Physics - Volume 71, Issues 8–9, June 2009, Pages 975–982
نویسندگان
, , , , , ,