کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1790645 1524440 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Role of high microwave power on growth and microstructure of thick nanocrystalline diamond films: A comparison with large grain polycrystalline diamond films
ترجمه فارسی عنوان
نقش قدرت بالای مایکروویو بر رشد و میکروارگانیسم فیلمهای ضخیم نانوبلورهای الماس: مقایسۀ با فیلم های الماس پلی کریستالی بزرگ
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
چکیده انگلیسی


• New operation parameter window is established for fast growth of NCD films.
• Growth rate of NCD films increases with power, 4.6 μm/h is the highest up to 4 kW.
• A systematic study of high microwave power effect on growth behaviour of NCD films.
• A distinct growth habit and microstructure evolution of NCD films is disclosed.

In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (MPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH4 in H2 plasma. The coupled effect of high microwave power and substrate temperature on NCD growth behaviour is systematically investigated by varying only power, while fixing the remaining operating parameters. When the power increases from 2 kW to 4 kW, resulting also in rise of the Si substrate temperature higher than 150 °C, the diamond films obtained maintain the NCD habit, while the growth rate increases significantly. The highest growth rate of 4.6 μm/h is achieved for the film grown at 4 kW, which represents a growth rate enhancement of about 15 times compared with that obtained when using 2 kW power. Possible factors responsible for such remarkable growth rate enhancement of the NCD films are discussed. The evolution of NCD growth characteristics such as morphology, microstructure and texture is studied by growing thick films and comparing it with that of large grain polycrystalline (PCD) films. One important characteristic of the NCD films obtained, in contrast to PCD films, is that irrespective of deposition time (i.e. film thickness), their grain size and surface roughness remain in the nanometer range throughout the growth. Finally, based on our present and previous experimental results, a potential parameter window is established for fast growth of NCD films under high power conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Crystal Growth - Volume 389, 1 March 2014, Pages 83–91
نویسندگان
, , , , , , , , ,