کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
18097 42711 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes
چکیده انگلیسی

Bovine liver catalase was encapsulated in an aqueous phase of the phospholipid vesicle (liposome) to improve the stability of its tetrameric structure and activity. The catalase-containing liposomes (CALs) prepared were 30, 50 and 100 nm in mean diameters (CAL30, CAL50 and CAL100, respectively). The CAL100 included the types I, II and III based on the amounts of catalase encapsulated. The CAL30, CAL50 and CAL100-I contained one catalase molecule per liposome, and the CAL100-II and CAL100-III on average 5.2 and 17 molecules, respectively. The storage stability of catalase in either CAL system was significantly increased compared to that of free catalase at 4 °C in a buffer of pH 7.4. At 55 °C, free catalase was much more deactivated especially with decreasing its concentration predominantly due to enhanced dissociation of catalase into subunits while it was so done at excessively high enzyme concentration mainly due to enhanced formation of catalase intermolecular aggregates. Among the three types of CAL100, the CAL100-II showed the highest thermal stability, indicating that an excess amount of catalase in the CAL100-III was also disadvantageous to maintain an active form of the catalase even in liposome. In the CAL100-III, however, the stability of catalase was significantly improved compared to that of free catalase at the same concentration. The CAL thermal stability was little affected by the liposome size as observed in the CAL30, CAL50 and CAL100-I. An intrinsic tryptophan fluorescence of the catalase recovered from the CAL100-II thermally treated at 55 °C revealed that a partially denatured catalase molecule was stabilized through its hydrophobic interaction with liposome membrane. This interaction depressed not only dissociation of catalase into subunits but also formation of an inactive intermolecular aggregate between the catalase molecules in a liposome. Furthermore, either type of CAL100 showed a higher stability than free catalase in the successive decompositions of 10 mM H2O2 at 25 °C mainly because the H2O2 concentration was kept low inside liposomes due to the permeation barrier of the lipid membrane to H2O2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Enzyme and Microbial Technology - Volume 41, Issues 6–7, 1 November 2007, Pages 849–858
نویسندگان
, , , , ,