کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1811354 | 1025592 | 2011 | 6 صفحه PDF | دانلود رایگان |

Within the framework of the effective-mass approximation, we have calculated the combined effects of hydrostatic pressure, temperature and applied electric field on an exciton confined in a typical GaAs/Ga0.7Al0.3As quantum dot. Several inputs of the confinement potential, hydrostatic pressure, temperature, and applied electric field have been considered. Our findings suggest that (1) the effect of the confinement strength is dominant over the electric field effect, (2) the oscillator strength is an increasing function of the hydrostatic pressure, (3) the absorption coefficients and energy difference depend strongly on the hydrostatic pressure but weakly on the temperature, (4) the absorption coefficients with considering excitonic effects are stronger than those without considering excitonic effects and the absorption peak will move to the right side induced by the electron–hole interaction, (5) the applied electric field may effect either the size or the position of absorption peaks of excitons.
Journal: Physica B: Condensed Matter - Volume 406, Issue 19, 1 October 2011, Pages 3735–3740