کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
183701 459556 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Glucose assisted synthesis of hollow spindle LiMnPO4/C nanocomposites for high performance Li-ion batteries
ترجمه فارسی عنوان
گلوکز سنتز نانو کامپوزیت های لیتیوم توموگرافی لیمو -4 / سی را برای باتری های لیتیوم یون
کلمات کلیدی
باتری یون لیتیوم، فسفات منگنز لیتیم، راه حل فاز روش، سنتز دمای پایین، دی متیل سولفوکسید
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• A pure and well-crystallized LiMnPO4 are synthesized via a solution-phase method.
• The LiMnPO4/C composite constitutes highly and uniformly distributed hollow spindles.
• The LiMnPO4/C composite exhibits a high specific capacity and cycling performance.
• The growth process of the hollow spindle LiMnPO4 particles is revealed.

Nano-sized hollow spindle LiMnPO4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO4/C nanocomposite was obtained by sintering nano-sized LiMnPO4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO4/C nanocomposite is 161.8 mAh g−1 at 0.05C, 137.7 mAh g−1 at 0.1C and 110.8 mAh g−1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li deintercalation.

Nano-sized hollow spindle LiMnPO4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 178, 1 October 2015, Pages 420–428
نویسندگان
, , , , , , , ,