کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
187321 459640 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability
چکیده انگلیسی

Combination of inorganic quantum dots (QDs) and organic/metallorganic dyes as supracollectors nanocomposites could have an important role on the development of efficient photovoltaic devices based on the synergistic action of the hybrid-sensitizers. Here we have analyzed the combination of CdSe QDs and polypyridil N719 ruthenium dye. By ultrafast transient grating measurements we show that the cascading structure (type II) of this system takes full advantage to augment electron injection and hole regeneration efficiencies. Co-sensitized TiO2 electrodes lead to an improvement in charge separation, increasing the number of injected electrons from the CdSe QDs to the TiO2 as a consequence of the suppression of back reaction, by fast regeneration of holes by the dye action. The potentiality of this supracollector system has been verified in a complete cell configuration. Sulfide/polysulfide based ionic liquid in which both sensitizers (QD and dye) are stable has been employed as hole conducting media. In spite of the limited efficiencies of the analyzed cells, the higher photocurrents measured for CdSe/N719 co-sensitization compared to the cells sensitized using a single sensitizer constitutes a valid proof of the concept. Impedance spectroscopy unveiled the recombination limitation of the analyzed cells. On the other hand, ionic liquid exhibits an enhanced cell stability maintaining cell efficiency after one week and keeping it at 80% after 21 days. The reported results highlight a huge potential of the synergetic combination of QD and dyes for improving solar cell performance and of novel sulfide/polysulfide ionic liquid-based electrolytes for enhancing long term stability and sustainability of QD sensitizers.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 100, 30 June 2013, Pages 35–43
نویسندگان
, , , , , , ,