کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
187616 459646 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template
چکیده انگلیسی

Novel mesoporous carbon has been synthesized using rod-like nano-hydroxyapatite (HA) particles as templates, sucrose as carbon precursor by polymerizing, carbonizing and the removal of templates with HCl solution. In the process, HA not only acted as an endotemplate but also an exotemplate producing micropores and mesopores. Subsequently, mesoporous carbon was modified by HNO3 solution with different concentration. The morphology, pore structure, and surface functional groups of the as-obtained samples are analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller method (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance for electrochemical capacitors is evaluated in a 1 M H2SO4 aqueous solution. The results manifest that the structrue of resultant carbon with a high surface area (719.7 m2 g−1) and large pore volume (1.51 cm3 g−1) is the replica of HA. After modification, the surface area and pore volume mesoporous carbons slightly decrease, while their electrochemical performance have been significantly improved with the increase of the capacitance from 125.7 to 170.1 F g−1 and a non-decayed cycle life over 5000 cycles for HA-C-0.15N.

Figure optionsDownload as PowerPoint slideHighlights
► A novel porous carbon with rod-like pore structure was prepared using hydroxyapatite as templates.
► The N and O contained mesoporous carbon was obtained by modified by HNO3 solution.
► The role of hydroxyapatite as double-template and mechanism of surface modification were supposed.
► The modified mesoporous carbon exhibited good electrochemical performances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 89, 1 February 2013, Pages 400–406
نویسندگان
, , , , , , , , , ,