کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
187624 459646 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery
چکیده انگلیسی

A new gel polymer electrolyte (GPE) system for lithium ion battery was developed by using anti-thermal shrinkagable nanoparticles/polymer incorporating with ionic liquid. Polyethylene-supported SiO2/poly(methyl methacrylate–acrylonitrile–vinyl acetate) (P(MMA–AN–VAc)) and Al2O3/P(MMA–AN–VAc) separators were prepared and the corresponding GPEs, SiO2/P(MMA–AN–VAc) + LiTFSI + PYR14TFSI/VC and Al2O3/P(MMA–AN–VAc) + LiTFSI + PYR14TFSI/VC, were obtained by immersing the separators in an ionic liquid electrolyte of 0.5 mol kg−1 LiTFSI in PYR14TFSI/VC. The structure and performance of the separators and corresponding GPEs were characterized by thermogravimetric analysis (TGA), air permeability, scanning electron spectroscopy (SEM), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV) and charge–discharge test. It is found that the nanoparticles/polymer separators have good dimensional stability and the corresponding GPEs have good ionic conductivity and excellent compatibility with the electrodes of lithium ion battery. SiO2/P(MMA–AN–VAc) and Al2O3/P(MMA–AN–VAc) separators are stable up to 310 °C and have a Gurley value of 8 s. SiO2/P(MMA–AN–VAc) based GPE has an ionic conductivity of 1.2 × 10−3 S cm−1 at room temperature and an oxidative decomposition potential of 5.3 V (vs. Li/Li+). The interfacial resistance between anode lithium and GPE is changed from 47 Ω cm2 on the first day to 118 Ω cm2 after the 25 days. The battery Li/GPE/LiFePO4 shows good rate and cyclic performance.


► Anti-thermal shrinkage nanoparticle/polymer and ionic liquid based GPE is developed.
► The nanoparticle/polymer separator has good dimensional stability.
► The GPE has good ionic conductivity and excellent compatibility with anode and cathode.
► Battery Li/GPE/LiFePO4 exhibits good rate and cycle performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 89, 1 February 2013, Pages 461–468
نویسندگان
, , , ,