کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
188384 | 459659 | 2012 | 7 صفحه PDF | دانلود رایگان |

Cupric oxide (CuO) nanoparticles (NPs) with three-dimensional (3D) sponge structure are obtained through the sintering of Cu NPs at 360 °C. Their morphology is analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and their crystal structure is checked by X-ray diffraction. CuO NPs have a 3D porous structure. The NPs are assembled to form larger secondary particles with many empty spaces among them, and they have a CuO phase after the heat treatment. CuO NPs with this novel architecture exhibit good electrochemical performance as anode material. The anode material with a sponge-like structure is prepared at 360 °C, as the Li-ion battery exhibits a high electrochemical capacity of 674 mAh g−1. When the sample is sintered at 360 °C, the charge/discharge capacities increase gradually and cycle up to 50 cycles at a C/10 rate, exhibiting excellent rate capability compared with earlier reported CuO/CuO-composite anodes. Electrochemical impedance spectroscopy (EIS) measurements suggest that the superior electrical conductivity of the sample sintered at 360 °C is the main factor responsible for the improved power capability.
Journal: Electrochimica Acta - Volume 70, 30 May 2012, Pages 98–104