کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
189392 | 459679 | 2011 | 7 صفحه PDF | دانلود رایگان |

Platinum based nanocatalyst at home made Nb–TiO2 support was synthesized and characterized as the catalyst for oxygen reduction reaction in 0.1 mol dm−3 NaOH, at 25 °C. Nb doped TiO2 catalyst support, containing 5% of Nb, has been synthesized by modified acid-catalyzed sol–gel procedure in non-aqueous medium. BET and X-ray diffraction (XRD) techniques were applied for characterization of synthesized supporting material. XRD analysis revealed only presence of anatase TiO2 phase in synthesized support powder. Existence of any peaks belonging to Nb compounds has not been observed, indicating Nb incorporated into the lattice.Nb–TiO2 supported Pt nanocatalyst synthesized, using borohydride reduction method, was characterized by TEM and HRTEM techniques. Platinum nanoparticles distribution, over Nb doped TiO2 support, was quite homogenous. Mean particle size of about 4 nm was found with no pronounced particle agglomeration. Electrochemical techniques: cyclic voltammetry and linear sweep voltammetry at rotating disc electrode were applied in order to study kinetics and estimate catalytic activity of this new catalyst for the oxygen reduction reaction in alkaline solution. Two different Tafel slopes were found: one close to −90 mV dec−1 in low current density region and other approximately −200 mV dec−1 in high current density region, which is in good accordance with literature results for oxygen reduction at Pt single crystals, as well as Pt nanocatalysts in alkaline solutions. Similar specific catalytic activity (expressed in term of kinetic current density per real surface area) of Nb(5%)–TiO2/Pt catalyst for oxygen reduction reaction in comparison with the carbon supported platinum (Vulcan/Pt) nanocatalyst, was found.
► Nb doped TiO2 catalyst support was successfully synthesized.
► Synthesized support surface area was much higher comparing with sub-stoichiometric titanium oxides as supporting material.
► The Nb–TiO2 supported Pt catalyst was successfully prepared and characterized by TEM technique.
► Nb doped TiO2 support seems to be more suitable than carbon based support.
► The change in the rate-determining step was proposed for reaction mechanism explanation.
Journal: Electrochimica Acta - Volume 56, Issue 25, 30 October 2011, Pages 9020–9026